

PSFEx User Manual

Contents

	1. Introduction

	2. License

	3. Installing the software
	3.1. Hardware requirements

	3.2. Obtaining PSFEx

	3.3. Software requirements

	3.4. Installation

	4. Getting started
	4.1. Input files

	4.2. Output files

	4.3. The Configuration file

	5. How PSFEx works
	5.1. Overview of the software

	5.2. Point source selection

	5.3. Modelling the PSF

	5.4. Managing PSF variations

	5.5. Quality assessment

	6. Examples
	6.1. Hands-on example 1

	6.2. Example 2: very wide photographic plate

	6.3. Example 3: unfocused instrument

	7. Frequently Asked Questions

	8. Troubleshooting

	9. Acknowledging PSFEx

	10. Acknowledgements

	11. Bibliography

	12. Appendices
	12.1. .psf file format description

Indices and tables

	Index

	Module Index

	Search Page

1. Introduction

PSFEx [http://astromatic.net/software/psfex] (PSF Extractor) is a computer program that extracts precise models
of the Point Spread Functions (PSFs) [http://en.wikipedia.org/wiki/Point_spread_function] from images processed by
SExtractor [http://astromatic.net/software/sextractor] and measures the quality of images. The generated PSF
models can be used for model-fitting photometry or morphological
analyses. The main features of PSFEx are:

	Modelling of any arbitrary non-parametric or parametric,
bandwidth-limited, PSF.

	Reconstruction of PSF from undersampled images using super-resolution
on the pixel basis, the Gauss-Laguerre basis [4]
or a user-provided vector basis.

	Modelling of PSF variations as a polynomial function of position in
image, any SExtractor measurement, or any numerical FITS [http://fits.gsfc.nasa.gov] parameter.

	Tracking of hidden PSF dependencies using Principal Component
Analysis [http://en.wikipedia.org/wiki/Principal_component_analysis]
[5].

	Computation of PSF homogenisation kernels (to convert variable
instrumental PSFs to constant round Moffat [http://en.wikipedia.org/wiki/Moffat_distribution]
[2] profiles).

	Automatic selection of point sources.

	Compatibility with SExtractor FITS or Multi-Extension FITS catalogue
format in input,

	VOTable [http://www.ivoa.net/documents/VOTable]-compliant XML [http://en.wikipedia.org/wiki/XML] output of meta-data.

	XSLT [http://en.wikipedia.org/wiki/XSLT] filter sheet provided for convenient access to metadata from a
regular web browser.

2. License

PSFEx [http://astromatic.net/software/psfex] is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your
option) any later version. PSFEx is distributed in the hope that it will
be useful, but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details. You should have received a copy
of the GNU General Public License along with PSFEx. If not, see
www.gnu.org/licenses/ [http://www.gnu.org/licences/].

3. Installing the software

3.1. Hardware requirements

PSFEx runs in (ANSI) text-mode from a shell. A window system is
not necessary for basic operation.

When it comes to memory usage, the amount required by PSFEx depends mostly on
the number of point sources present in the input catalogues times the number of
pixels in the small image that represents each of them. A typical figure is
about 15 kbytes per point source; hence even on a modest computer with
1GB of memory, more than 20,000 point sources can easily be
accommodated at once.

Note that PSFEx takes advantage of multiple CPU cores for some operations.

3.2. Obtaining PSFEx

For Linux users, the simplest way to have PSFEx up and running is to install
the standard binary package the comes with your Linux distribution. Run, e.g.,
apt-get psfex (on Debian) or dnf psfex (Fedora) and
PSFEx, as well as all its dependencies, will automatically be installed. If you
decided to install the package this way you may skip the following and move
straight to the next section.

However if PSFEx is not available in your distribution, or to obtain the most
recent version, the PSFEx source package can be downloaded from the official
GitHub repository [https://github.com/astromatic/psfex] . One may choose one of the stable
releases [https://github.com/astromatic/psfex/releases], or for the fearless,
a copy of the current master development branch [https://github.com/astromatic/psfex/archive/master.zip].

3.3. Software requirements

PSFEx has been developed on GNU/Linux [http://en.wikipedia.org/wiki/Linux]
machines and should compile on any
POSIX [http://en.wikipedia.org/wiki/POSIX]-compliant system (this includes
Apple OS X® [http://www.apple.com/osx] and Cygwin [http://www.cygwin.com] on Microsoft Windows® [http://www.microsoft.com/windows], at the price of
some difficulties with the configuration), provided
that the development packages of the following libraries have been installed:

	ATLAS [http://math-atlas.sourceforge.net] V3.6 and above [2],

	FFTw [http://www.fftw.org] V3.0 and above [3],

	PLPlot [http://www.plplot.org] V5.9 and above.

On Fedora/Redhat distributions for instance, the development packages above are
available as atlas-devel, fftw-devel and plplot-devel.
PLPlot is only required for producing diagnostic plots. Note
that ATLAS and FFTw are not necessary if PSFEx is linked with
Intel®‘s MKL [http://software.intel.com/intel-mkl] library.

3.4. Installation

To install from the GitHub source package, you must first uncompress the
archive:

$ unzip psfex-<version>.zip

A new directory called psfex-<version> should now appear at the current
location on your disk. Enter the directory and generate the files required by
the autotools [http://en.wikipedia.org/wiki/GNU_Build_System], which the
package relies on:

$ cd psfex-<version>
$ sh autogen.sh

A configure script is created. This script has many options, which may be
listed with the --help option:

$./configure --help

No options are required for compiling with the default GNU C compiler (gcc)
if all the required libraries are installed at their default locations:

$./configure

Compared to gcc and the librairies above, the combination of the Intel®
compiler (icc) and the MKL [http://software.intel.com/intel-mkl] libraries can give the PSFEx executable a
strong boost in performance, thanks to better vectorized code.
If icc and the MKL are installed on your system [4] , you can take
advantage of them using

$./configure --enable-mkl

Additionally, if the PSFEx binary is to be run on a different machine
that does not have icc and the MKL installed (e.g., a cluster computing
node), you must configure a partially statically linked executable using

$./configure --enable-mkl --enable-auto-flags --enable-best-link

In all cases, PSFEx can now be compiled with

$ make -j

An src/psfex executable is created. For system-wide installation, run the
usual

$ sudo make install

You may now check that the software is properly installed by simply
typing in your shell:

$ psfex

which will return the version number and other basic information (note that some shells require the rehash command to be run before making a
freshly installed executable accessible in the execution path).

	[1]	Mac OS X .dmg [https://en.wikipedia.org/wiki/Apple_Disk_Image] packages should be available soon.

	[2]	Use the --with-atlas and/or
--with-atlas-incdir options of the PSFEx configure
script to specify the ATLAS library and include paths if ATLAS files are
installed at unusual locations.

	[3]	Make sure that FFTw has been compiled with
configure options --enable-threads --enable-float.

	[4]	The Linux versions of the Intel® compiler and MKL are
available for free to academic researchers, students, educators and open
source contributors [http://software.intel.com/qualify-for-free-software].

4. Getting started

PSFEx is run from the shell with the following syntax:

$ psfex Catalog1 [Catalog2 ...] -c configuration-file [-Parameter1 Value1 -Parameter2 Value2 ...]

The parts enclosed within brackets are optional. The file names of input
catalogues can be directly provided in the command line, or in lists that are
ASCII files with each catalogue name preceded by @ (one per line). One
should use lists instead of the catalogue file names if the number of input
catalogues is too large to be handled directly by the shell. Any
-Parameter Value statement in the command-line overrides the
corresponding definition in the configuration file or any default value (see
below).

4.1. Input files

4.1.1. Catalogues

PSFEx does not work directly on images. Instead, it operates on SExtractor [http://astromatic.net/software/sextractor]
catalogues that have a small sub-image (“vignette”) recorded for each
detection. This makes things much easier for PSFEx as it does not have to
handle the detection and deblending processes. The catalogue files read by
PSFEx must be in SExtractor FITS_LDAC binary format. This allows
PSFEx to have access to the original image header content. The catalogues
must contain all the following parameters in order to be processable by
PSFEx:

	small image (“vignette”) centered on the object, VIGNET(w,h),
where w and h are respectively the width and the height of
the image in pixels,

	centroid coordinates, e.g. X_IMAGE and Y_IMAGE,

	half-light radius FLUX_RADIUS,

	Signal-to-noise ratio in a Gaussian window SNR_WIN

	flux measured through a fixed aperture, e.g. FLUX_APER(1),

	flux uncertainty, e.g. FLUXERR_APER(1),

	object elongation ELONGATION,

	extraction flags FLAGS.

The VIGNET dimensions \(w\) and h set the maximum size, in
pixels, of the image area stored for each detection. It is advised to
use square sub-images (\(w = h\)) with an odd number of pixels (for
symmetry across the central pixel), and so that the sub-image covers
much of the visible footprint of non-saturated stars.

The size of sub-images in the catalogue (here \(35\times 35\) pixels)
must been chosen so that the frame encloses much of the visible
footprint of non-saturated stars. It is recommended not to use
excessively large sub-images as they lead to unpractically large
catalogues and make the PSFEx PSF cleaning procedure less robust. In
practice, values such as in VIGNET(45,45) for instance, will generally
work well with most images.

SExtractor configuration settings for the pre-PSFEx run do not require
much tuning in general. The SExtractor configuration file only need to differ
from the default one on a few keywords. However these keywords must be set with
care:

	CATALOG_TYPE should be set to FITS_LDAC (binary FITS [http://fits.gsfc.nasa.gov] catalogue).

	PHOT_APERTURE defines the diameter of the circular aperture (in pixels)
used as a reference for normalising the amplitude of the PSF model. It should
be set to a value large enough so that variations due to seeing or
aberrations are negligible at the level required for photometric
analyses. But be aware that using excessively large apertures lead to noisy
measurements and are more prone to light pollution by neighbouring
sources. For professional, ground-based images, a value corresponding to an
aperture diameter of \(5''\) is often a good compromise.

	Detector gain: The effective “gain” (or more exactly the conversion factor,
in units of electrons/ADU) is required by SExtractor to compute the
uncertainty on pixel values, especially with bright star images.
The GAIN_KEY configuration parameter tells SExtractor what keyword in the
original FITS image header carries the detector gain. The default string for
GAIN_KEY is GAIN. In multi-CCD cameras, the gain can slightly vary
from one CCD to another, and can also vary with time. When working with
single exposures, it is recommended to let SExtractor read the gain value
from the image header, if it is present. In some detector chips with multiple
readouts, several values of the gain may be present in the same header under
different keywords (e.g. GAINA, GAINB). Since the gain differences
will often be negligibly small for PSFEx (10% or less), it is usually safe
to use one single value for the whole chip (for example, GAINA).
Note that what matters for reduced images is the “effective” gain, not the
original detector gain. Dividing pixel values by some amount (e.g., the
exposure time or a non-normalised flat field) multiplies the effective gain
by the same amount. Combining several images also modifies the gain. For
example if the final image is the mean of several images, the effective gain
will be equal to the initial gain multiplied by the number of images. Taking
the median or a weighted average also affect the gain (see, e.g., the
SWarp [https://www.astromatic.net/pubsvn/software/swarp/trunk/doc/swarp.pdf]
documentation). Recent versions of SWarp properly take into account the
effect of flux scaling and stacking on the gain, and insert the average
effective gain in the output image header.
Finally if no keyword with the name specified by GAIN_KEY can be found in
the FITS image header, SExtractor will fall back to using the gain value
specified by the GAIN configuration parameter. The default fallback value
is 0, which actually tells SExtractor that the gain should be considered
infinite (bright pixels not noisier that faint pixels).

	Saturation level: PSFEx requires SExtractor to flag all saturated sources,
which may otherwise contaminate the “clean” star sample used to compute the
PSF model. SExtractor identifies saturated sources by checking if the value
of at least one source pixel exceeds a given “saturation level”.
As for the gain above, SExtractor examines first the value of a FITS image
header keyword to read the saturation level (in ADUs). The header keyword can
be set with the SATUR_KEY SExtractor configuration parameter; the default
string for SATUR_KEY is SATURATE. SATURATE is commonly found in
image files released by observatories and pipelines. Unfortunately, in
practice, it is often found to be set at a value higher than that at which
the detector markedly starts to behave non-linearly. It is therefore highly
recommended to examine visually saturated stars on images and check if
pixel values systematically exceed the saturation level reported in the
header. If not, it is advised to give SATUR_KEY a name unlikely to exist
as a keyword in the FITS file (for example, DUMMY), and force the saturation
level in SExtractor to a lower value using the SATUR_LEVEL fallback
parameter. Note that some detector/amplifier combinations start becoming
non-linear at levels below the apparent saturation limit, so it is always
safer to give a saturation level about 10% lower than the lowest value
derived from the visual examination of all images.

4.2. Output files

4.2.1. PSF model files (.psf)

The main purpose of PSFEx is to create a PSF model for each of the images from
which the input catalogues were extracted. The PSF models are stored under file
names that are given the .psf extension by default (this may be changed
with the PSF_SUFFIX configuration parameter). The .psf files are
FITS binary tables that can be read back into SExtractor to perform accurate
model-fitting of the sources being detected. A detailed description of the
.psf file format is given in the Appendix.

4.2.2. PSF homogenisation files (.homo)

This is presently an experimental feature. In addition to computing PSF models,
PSFEx has the possibility to derive “PSF homogenisation kernels” for all input
catalogues. A PSF homogenisation kernel is a (variable) convolution kernel
which, when applied to an image, gives the point sources it contains a
constant, arbitrary shape. For practical purposes the target shape will
preferably be a perfectly round analytical function, such as a Moffat
[2] profile:

(1)\[\]

Homogenising the PSF of a set of images can allow for more consistent
image combinations and measurements, once the consequences on noise have
been properly taken into account.

PSFEx stores PSF homogenisation kernels as FITS data cubes. File names are
given the .homo extension by default; this may be changed using the
HOMOKERNEL_SUFFIX configuration parameter. .homo files can be read
by the PSFnormalize software developed by Tony Darnell from the
Dark Energy Survey data-management team to perform fast convolution of the
original images [3]. The SWarp software may also later
include this possibility.

4.2.3. Diagnostic files

Three types of files can be generated by PSFEx, providing diagnostics
about the derived PSF and the modelling process:

	“Check-images” are basic FITS files containing images of the PSF model, fit
residuals, etc.. Configuration parameters CHECKIMAGE_TYPE and
CHECKIMAGE_NAME allow the user to provide a list of check-image types and
file names, respectively, to be produced by PSFEx. A complete list of
available check-image types is given in §[chap:paramlist]. Many check-images
are actually aggregates of several small images; they may be stored as grids
(the default) or as datacubes if the CHECKIMAGE_DATACUBE parameter is set
to Y.

	“Check-plots” are graphic charts generated by PSFEx, showing maps or trends
of PSF measurements. The CHECKPLOT_TYPE and CHECKPLOT_NAME configuration
parameters allow the user to provide a list of check-plot types and file
names, respectively. A variety of raster and vector file formats, from JPEG
to Postscript, can be set with CHECKPLOT_DEV (the default format is
PNG). See the CHECKPLOT section of the
configuration parameter list below for details.

	An XML [http://en.wikipedia.org/wiki/XML] file providing a processing summary and various statistics in
VOTable [http://www.ivoa.net/documents/VOTable] format is written if the WRITE_XML switch is set to Y
(the default). The XML_NAME parameter can be used to change the default
file name psfex.xml. The XML file can be displayed with any recent
web browser; the XSLT stylesheet installed together with PSFEx will
automatically translate it into a dynamic, user-friendly web-page
(Fig. 4.1). For more advanced usages (e.g., access from a
remote web server), alternative XSLT translation URLs may be specified
using the XSL_URL configuration parameter.

[image: _images/psfex_xml.png]
Fig. 4.1 Rendition of a psfex.xml XML-VOTable file generated by
PSFEx with the Firefox [http://www.mozilla.org/firefox] web-browser.

4.3. The Configuration file

Each time it is run, PSFEx looks for a configuration file. If no
configuration file is specified in the command-line, it is assumed to be
called default.psfex and to reside in the current directory. If no
configuration file is found, PSFEx will use its own internal default
configuration.

4.3.1. Creating a configuration file

PSFEx can generate an ASCII dump of its internal default configuration, using
the -d option. By redirecting the standard output of PSFEx to a file, one
creates a configuration file that can easily be modified afterwards:

$ psfex -d > default.psfex

and a more extensive dump with less commonly used parameters can be generated
by using the -dd option.

4.3.2. Format of the configuration file

The format is ASCII. There must be only one parameter set per line,
following the form:

Config-parameter Value(s)

Extra spaces or linefeeds are ignored. Comments must begin with a #
and end with a linefeed. Values can be of different types: strings (can
be enclosed between double quotes), floats, integers, keywords or
Boolean (Y/y or N/n). Some parameters accept zero or several values,
which must then be separated by commas. Integers can be given as
decimals, in octal form (preceded by digit 0), or in hexadecimal
(preceded by 0x). The hexadecimal format is particularly convenient for
writing multiplexed bit values such as binary masks. Environment
variables, written as $HOME or ${HOME} are expanded.

4.3.3. Configuration parameter list

Here is a list of all the parameters known to PSFEx. Please refer to
next section for a detailed description of their meaning. Some
“advanced” parameters (indicated with an asterisk) are also listed. They
must be used with caution, and may be rescoped or removed without notice
in future versions.

	Parameter:	BADPIXEL_FILTER*

	Default:	N

	Type:	Boolean

If true (Y), input objects with vignettes containing more than
BADPIXEL_NMAX pixels flagged by SExtractor as bad or from deblended
neighbours will be rejected.

	Parameter:	BADPIXEL_NMAX

	Default:	N

	Type:	Boolean

Maximum number of bad pixels tolerated in the vignette before an object
is rejected (BADPIXEL_FILTER must be set to Y)

	Parameter:	BASIS_NAME

	Default:	basis.fits

	Type:	String

File name for the user-supplied FITS datacube of basis vector
images (BASIS_TYPE} must have been set to FILE)

	Parameter:	BASIS_NUMBER

	Default:	20

	Type:	integer

Size of basis vector set: square-root of the number of pixels for
BASIS_TYPE PIXEL, \(n_{\rm max}\) for BASIS_TYPE GAUSS-LAGUERRE, or
number of vectors for BASIS_TYPE FILE.

	Parameter:	BASIS_SCALE

	Default:	1.0

	Type:	float

Scale size of BASIS_TYPE GAUSS-LAGUERRE vector images.

	Parameter:	BASIS_TYPE

	Default:	BASIS_AUTO

	Type:	keyword

Basis vector set:

	NONE: No basis; the PSF is derived solely from the robust

	PIXEL: Pixel basis (super-resolution)

	PIXEL_AUTO: Equivalent to NONE for properly sampled images;
switches automatically to PIXEL (super-resolution) for critically sampled
and undersampled data.

	GAUSS_LAGUERRE: Gauss-Laguerre basis (also known as polar shapelets in the weak-lensing community).

	FILE: User-supplied vector basis, in the form of a FITS datacube (see BASIS_NAME).

	Parameter:	CENTER_KEYS

	Default:	X_IMAGE, Y_IMAGE

	Type:	strings

Catalogue Keys (SExtractor measurement parameters) that
define the initial guess for the source coordinates. Note that all input
vignettes are automatically re-centred by PSFEx using an iterative
Gaussian-weighted algorithm, hence the centring parameter is not critical.

	Parameter:	CHECKIMAGE_CUBE

	Default:	N

	Type:	Boolean

If true (Y), check-images will be saved as data-cubes.

	Parameter:	CHECKIMAGE_NAME

	Default:	chi.fits,proto.fits,samp.fits,resi.fits,snap.fits

	Type:	strings

File name of the check-image (diagnostic FITS image) of each type
(.fits extension is not required, as it is assumed by default).

	Parameter:	CHECKIMAGE_TYPE

	Default:	CHI, PROTOTYPES, SAMPLES, RESIDUALS, SNAPSHOTS

	Type:	keywords

Types of check-images (diagnostic FITS images) to generate during PSFEx processing:

	NONE No check-image.

	CHI (square-root of) \(\chi^2\) maps for all input vignettes.

	PROTOTYPES Versions of input vignettes, recentred, rescaled and resampled to PSF resolution.

	SAMPLES Input vignettes in their original position, resolution and flux scaling.

	RESIDUALS Input vignettes with best-fitting local PSF models
subtracted.

	SNAPSHOTS Grid of PSF model snapshots reconstructed at each
position/context.

	MOFFAT Grid of Moffat models fitted to PSF
model snapshots at each position/context.

	-MOFFAT Grid of PSF model snapshots reconstructed at each
position/context with best-fitting Moffat models
subtracted.

	-SYMMETRICAL Grid of PSF model snapshots reconstructed at each
position/context with symmetrised image subtracted.

	BASIS Basis vector images used by PSFEx to model the PSF.

	Parameter:	CHECKPLOT_ANTIALIAS

	Default:	Y

	Type:	Boolean

If true (Y), PBM, PNG and JPEG check-plots are generated with
anti-aliasing. ImageMagick [http://www.imagemagick.org] ‘s convert tool must be installed.

	Parameter:	CHECKPLOT_DEV

	Default:	PNG

	Type:	keywords

PLPlot devices to be used for check-plots (all devices may not be available, see PLPlot documentation for details):

	NULL No output

	XWIN X-Window

	TK Tk window (if available)

	XTERM XTerm window

	AQUATERM AquaTerm window (Mac OS X)

	PLMETA PLPlot .plm} meta-file

	XFIG XFig .fig} vector file

	LJIIP HP LaserJet IIP .lj} bitmap file

	LJ_HPGL HP LaserJet .hpg HPGL vector file

	IMP Impress .imp} file

	PBM Portable BitMap .pbm image

	PNG Portable Network Graphics .png image

	JPEG JPEG .jpg image

	PDF Portable Document Format .pdf file

	PS Black-and-white .ps Postscript file

	PSC Colour .ps Postscript file

	PSTEX PSTeX (a variant of Postscript) .ps file

	Parameter:	CHECKPLOT_NAME

	Default:	fwhm, ellipticity, counts, countfrac, chi, resi

	Type:	strings

File names for each series of check-plots. PSFEx will
automatically insert the associated catalogue names, and append/replace
file name extensions with the appropriate ones, depending on the chosen
CHECKPLOT_DEV(s) (.png for PNG files, .jpg for JPEG, etc.).

	Parameter:	CHECKPLOT_RES

	Default:	0

	Type:	integers (\(n \le 2\))

Check-plot x,y resolution for bitmap devices (0 is equivalent to 800,600).

	Parameter:	CHECKPLOT_TYPE

	Default:	FWHM, ELLIPTICITY, COUNTS, COUNT_FRACTION, CHI2, RESIDUALS

	Type:	keywords

Diagnostic check-plots to be generated during PSFEx processing (PSFEx must have been configured without the --without-plplot option):

	NONE No plot.

	FWHM Map of the model PSF Full-Width at Half-Maximum over the field
of view (one for each input catalogue).

	ELLIPTICITY Map of the model PSF ellipticity over the field of view
(one for each input catalogue).

	COUNTS Map of the spatial density of point sources (initially)
selected over the field of view (one for each catalogue).

	COUNT_FRACTION Map of the fraction of point sources accepted over the
field of view (one for each catalogue).

	CHI2 Map of the average \(\chi^2/{\rm d.o.f.}\) over the field of
view (one for each catalogue).

	MOFFAT_RESIDUALS Map of Moffat (eq.~[ref{eq:moffat}]) residual
indices over the field of view (one for each catalogue).

	ASYMMETRY Map of asymmetry indices over the field of view (one for
each catalogue).

	Parameter:	HOMOBASIS_NUMBER

	Default:	10

	Type:	integer

Size of the homogenisation kernel basis vector set: \(n_{\rm max}\) for
HOMOBASIS_TYPE GAUSS-LAGUERRE.

	Parameter:	HOMOBASIS_SCALE

	Default:	1.0

	Type:	float

Scale size of HOMOBASIS_TYPE GAUSS-LAGUERRE homogenisation
kernel vector images.

	Parameter:	HOMOBASIS_TYPE

	Default:	NONE

	Type:	keyword

Basis vector set for the homogenisation kernel:

	NONE No basis; no homogenisation kernel is computed.}

	GAUSS_LAGUERRE Gauss-Laguerre basis (also known as polar shapelets
in the weak-lensing community).

	Parameter:	HOMOKERNEL_SUFFIX

	Default:	.homo.fits

	Type:	string

Filename suffix of the homogenisation kernels computed by PSFEx.

	Parameter:	HOMOPSF_PARAMS}*

	Default:	2.0, 3.0

	Type:	floats (\(n \le 2\))

Moffat model Full-Width at Half-Maximum and \(\beta\) parameters
of the idealised target PSF chosen for homogenisation.

	Parameter:	MEF_TYPE

	Default:	INDEPENDENT

	Type:	keyword

	How PSFEx should deal with multi-extension catalogues (extracted from mosaic camera images):

	
	INDEPENDENT Derive the PSF model for each extension independently.

	COMMON Derive a common PSF model for all extensions.

	Parameter:	NEWBASIS_NUMBER

	Default:	8

	Type:	integer

Size of the image vector set (number of basis vectors) derived by
PSFEx from the input vignettes.}

	Parameter:	NEWBASIS_TYPE

	Default:	NONE

	Type:	keyword

	Type of image vector bases derived from input vignettes by |

	
	NONE No basis is computed.

	PCA_MULTI Karhunen-Lo`eve basis from Principal Component
Analysis on all FITS extensions.

	PCA_SINGLE Karhunen-Lo`eve bases from Principal Component
Analysis on individual FITS extensions.

	Parameter:	NTHREADS

	Default:	0

	Type:	integer

Number of threads (processes) to be used for parallel computation.
PSFEx must have been configured with the --disable-threads option at
compile time for this parameter to take effect. Note that multi-threading is
disabled in the current version of PSFEx

	Parameter:	PHOTFLUX_KEY

	Default:	FLUX_APER(1)

	Type:	string

Catalogue Key (SExtractor measurement parameter) that
defines the flux of sources, and therefore the normalisation of the PSF
amplitude. It is recommended to use a fixed aperture magnitude; the aperture
diameter set in SExtractor should be large enough so that the fraction of
flux enclosed stays constant from point source to point source, and small enough
to preserve the signal-to-noise ratio.

	Parameter:	PHOTFLUXERR_KEY

	Default:	FLUXERR_APER(1)

	Type:	string

Catalogue Key (SExtractor measurement parameter) that
defines the flux measurement uncertainty on each source. It is used for
computing the source signal-to-noise ratio.

	Parameter:	PSF_ACCURACY

	Default:	0.01

	Type:	float

Expected accuracy of vignette pixel values (standard deviation of
the flux fraction).

	Parameter:	PSF_PIXELSIZE

	Default:	1.0

	Type:	float

Effective pixel size (width of the top-hat intra-pixel response
function) in pixel step units.

	Parameter:	PSF_RECENTER

	Default:	Y

	Type:	Boolean

If true (Y), input vignettes are recentred at each iteration
of the PSF modelling process.

	Parameter:	PSF_SAMPLING

	Default:	0.0

	Type:	float

Sampling step of the PSF models, in pixels. Use 0 for automatic
sampling.

	Parameter:	PSF_SIZE

	Default:	25, 25

	Type:	integers (\(n \le 2\))

Dimensions of the tabulated PSF models, in PSF pixels.

	Parameter:	PSF_SUFFIX

	Default:	`` .psf``

	Type:	string

Filename suffix for PSF models computed by PSFEx.

	Parameter:	PSFVAR_DEGREES

	Default:	2

	Type:	integers (\(n = n_{\rm groups}\))

	Degree of polynomial of each context group. 0 indicates a

	constant PSF.

	Parameter:	PSFVAR_GROUPS

	Default:	1, 1

	Type:	integers (\(n = n_{\tt PSFVAR_KEYS}\))

Polynomial group which each context key belongs to.

	Parameter:	PSFVAR_KEYS

	Default:	X_IMAGE, Y_IMAGE

	Type:	strings (\(n \le 2\))

List of keys (SExtractor measurement parameters) on which
the PSF is supposed to depend (e.g. X_IMAGE, Y_IMAGE for a spatial
mapping of the PSF). Keywords preceded with a colon are interpreted as FITS
image keywords instead of SExtractor parameters.

	Parameter:	PSFVAR_NSNAP

	Default:	9

	Type:	integer

Number of PSF snapshots computed on each axis. This also defines the
resolution of the grid on which diagnostics and check-plot maps are computed.

	Parameter:	SAMPLE_AUTOSELECT

	Default:	Y

	Type:	Boolean

If true (Y), input vignettes are automatically selected based
on the source FWHMs, inside the range specified by SAMPLE_FWHMRANGE,
with fractional FWHM variability SAMPLE_VARIABILITY.

	Parameter:	SAMPLE_FLAGMASK

	Default:	0x00fe

	Type:	integer

Bit mask applied to SExtractor flags for rejecting input vignettes.

	Parameter:	SAMPLE_FWHMRANGE*

	Default:	2.0, 10.0

	Type:	floats (\(n=2\))

Range (in pixels) of source FWHMs (Full-Width at Half-Maximum) allowed
for input vignettes. FWHMs are currently estimated based on SExtractor‘s
FLUX_RADIUS measurements.

	Parameter:	SAMPLE_MAXELLIP

	Default:	0.3

	Type:	float

Maximum source ellipticity (i.e. \(\frac{\tt{A_IMAGE} - \tt{B_IMAGE}}{\tt{A_IMAGE} + \tt{B_IMAGE}}\)) allowed for input vignettes.

	Parameter:	SAMPLE_MINSN

	Default:	20.0

	Type:	float

Minimum source Signal-to-Noise ratio allowed for input vignettes.

	Parameter:	SAMPLE_VARIABILITY

	Default:	0.2

	Type:	float

Maximum fractional FWHM variability (1.0 = 100%) allowed for input vignettes.

	Parameter:	SAMPLEVAR_TYPE

	Default:	SEEING

	Type:	keyword

Catalogue-to-catalogue variability criteria for vignette selection:

	NONE No differences between catalogues.

	SEEING Seeing (hence FWHM) is expected to vary.

	Parameter:	STABILITY_TYPE

	Default:	EXPOSURE

	Type:	keyword

	EXPOSURE {???}

	SEQUENCE {???}

	Parameter:	VERBOSE_TYPE

	Default:	NORMAL

	Type:	keyword

Degree of verbosity of the software on screen:

	QUIET No Output besides warnings and error messages

	NORMAL Normal display with messages updated in real time using
ASCII escapes-sequences

	LOG Like NORMAL, but without real-time messages and
ASCII escape-sequences

	FULL Everything

	Parameter:	WRITE_XML

	Default:	Y

	Type:	Boolean

If true (Y), an XML summary file will be written after completing
the processing.

	Parameter:	XML_NAME

	Default:	psfex.xml

	Type:	string

File name for the XML output of PSFEx.

	Parameter:	XSL_URL

	Default:	.

	Type:	string

URL of an XSL style-sheet for the XML output of PSFEx. This URL
will appear in the href attribute of the style-sheet tag.

5. How PSFEx works

5.1. Overview of the software

[image: _images/psfex_layout.svg]Fig. 5.1 Global Layout of PSFEx.

The global layout of PSFEx is presented in Fig. 5.1. There
are many ways to operate the software. Let us now describe the important
steps in the most common usage modes.

	PSFEx starts by examining the catalogues given in the command line.
In the default operating mode, for mosaic cameras, Multi-Extension
FITS (MEF) files are processed extension by extension. PSFEx
pre-selects detections which are likely to be point sources, based on
source characteristics such as half-light radius and ellipticity,
while rejecting contaminated or saturated objects.

	For each pre-selected detection, the “vignette” (produced by
SExtractor) and a “context vector” are loaded in memory. The context
vector represents the set of parameters (like position) on which the
PSF model will depend explicitly.

	The PSF modelling process is iterated 4 times. Each iteration
consists of computing the PSF model, comparing the vignettes to the
model reconstructed in their “local contexts”, and excluding
detections that show too much departure between the data and the
model.

	Depending on the configuration, two types of Principal Component
Analyses (PCAs) may be included at this stage, either to build an
optimised image vector basis to represent the PSF, or to track hidden
dependencies of the model. In both cases, they result in a second
round of PSF modelling.

	The PSF models are saved to disk. If requested, PSF homogenisation
kernels may also be computed and written to disk at this stage.
Finally, diagnostic files are generated.

5.2. Point source selection

PSFEx requires the presence of unresolved sources (stars or quasars) in
the input catalogue(s) to extract a valid PSF model. In some
astronomical observations, the fraction of suitable point sources that
may be used as good approximations to the local PSF may be rather low.
This is especially true for deep imaging in the vicinity of galaxy
clusters at high galactic latitudes, where unsaturated stars may
comprise only a small percentage of all detectable sources.

5.2.1. Selection criteria

To minimise as much as possible the assumptions on the shape of the PSF, PSFEx adopts
the following selection criteria:

	the shape of suitable unresolved (unsaturated) sources does not depend on the flux.

	amongst image profiles of all real sources, those from unresolved sources have the
smallest Full-Width at Half Maximum (FWHM).

These considerations as well as much experimentation led to adopting a first-order
selection similar to the rectangular cut in the half-light-radius (\(r_{\rm h}\))
vs. magnitude plane, popular amongst members of the weak lensing community (Kaiser et
al. 1995). SExtractor’s FLUX_RADIUS parameter with input parameter
PHOT_FLUXFRAC \(=0.5\) provides a good estimate for \(r_{\rm h}\). In PSFEx,
the “vertical” locus produced by point sources (whose shape does not depend on
magnitude) is automatically framed between a minimum signal-to-noise threshold and the
saturation limit on the magnitude axis, and within some margin around the local mode on
the \(r_{\rm h}\) axis (Fig. 5.2). The relative width of the selection box
is set by the SAMPLE_VARIABILITY configuration parameter (0.2 by default), within
boundaries defined by half the SAMPLE_FWHMRANGE parameter (between 2 and 10 pixels
by default). Additionally, to provide a better rejection of image artifacts and
multiple objects, PSFEx excludes detections

	with a Signal-to-Noise Ratio (SNR) below the value set with the SAMPLE_MINSN
configuration parameter (20 by default). The SNR is defined here as the ratio between
the source flux and the source flux uncertainty.

	with SExtractor extraction FLAGS that match the mask set by the
SAMPLE_FLAGMASK configuration keyword. The default mask (00fe in hexadecimal)
excludes all flagged objects, except those with FLAGS = 1 (indicating a crowded
environment).

	with an ellipticity exceeding the value set with the SAMPLE_MAXELLIP configuration
parameter (0.3 by default). The ellipticity is defined here as \((A-B)/(A+B)\),
where \(A\) and \(B\) are the lengths of the major and minor axes, respectively.
The ratio \(A/B\) is also called the ELONGATION. Note that, for historical
reasons, this definition differs from the one use in SExtractor, which is
\((1-B/A)\)

	that include pixels that were given a weight of 0 (for weighted source extractions).

[image: _images/rhmag.png]
Fig. 5.2 Half-light-radius (\(r_{\rm h}\), estimated by SExtractor‘s FLUX_RADIUS) vs
magnitude (MAG_AUTO) for a 520 s CFHTLS exposure at high galactic latitude taken
with the Megaprime instrument in the \(i\) band. The rectangle enclosing part of
the stellar locus represents the approximate boundaries set automatically by PSFEx to
select point sources.

5.2.2. Iterative filtering

Despite the filtering process, a small fraction of the remaining point source candidates
(typically 5-10% on ground-based optical images at high galactic latitude) is still
unsuitable to serve as a realisation of the local PSF, because of contamination by
neighbouring objects. Iterative procedures to subtract the contribution from neighbour
stars have been successfully applied in crowded fields
[6][7]. However these techniques do not
solve the problem of pollution by non-stellar objects like image artifacts, a
common curse of wide field imaging, and contaminated point sources still have to
be filtered out.

[image: _images/chi2map.png]
Fig. 5.3 Left: some source images selected for deriving a PSF model of a MEGACAM
image (the basic rejection tests based on SExtractor flags and measurements
were voluntarily bypassed to increase the fraction of contaminants in this
illustration). Right: map of residuals computed as explained in the text;
bright pixels betray interlopers like cosmic ray hits and close neighbour
sources.

The iterative rejection process in PSFEx works by deriving a 1st-order
estimate of the PSF model, and computing a map of the residuals of the
fit of this model to each point source (Fig. 5.3): each pixel
of the map is the square of the difference square of the model with the
data, divided by the \(\sigma_i^2\) estimate from
equation

 6. Examples

6. Examples

In the following, examples of use of PSFEx are given, together with
commented command lines.

6.1. Hands-on example 1

Let us consider a V band FITS image RX_J2202-19_V.fits and its weight
map RX_J2202-19_V.weight.fits. We wish to fit all the galaxies of the
image with a galaxy model using SExtractor, which requires computing a
model of the PSF first.

We must first run SExtractor on this image to obtain a temporary
catalogue in FITS_LDAC format that contains small sub-images from which
the PSF model will be extracted. For this, we define in a SExtractor
parameter file — let us call it prepsfex.param — the parameters required
for the use of PSFEx:

X_IMAGE
Y_IMAGE
FLUX_RADIUS
FLUX_APER(1)
FLUXERR_APER(1)
ELONGATION
FLAGS
SNR_WIN
VIGNET(35,35)

TBW

6.2. Example 2: very wide photographic plate

TBW

6.3. Example 3: unfocused instrument

TBW

7. Frequently Asked Questions

Skeptical Sam doesn’t have time to test software extensively but is
always keen on asking aggressive questions to the author to find out if
a program could fit his needs.

PSFEx represents PSFs as an array of tabulated values! Can
it really deal with undersampled images? Isn’t it too noisy?

PSFEx was designed from the ground up to deal with
undersampled images and arbitrary PSFs. Although the PSF “model” in
PSFEx is actually a small image, it is sampled at a different step than
the original pixels: more finely for undersampled observations, and more
coarsely for oversampled observations, to avoid any loss and redundancy
of information. Despite built-in regularisation, PSF models
reconstructed on the pixel basis can indeed be noisy if the number of
selected stars is small. This can be circumvented to some extent by
using ad hoc basis to solve for the PSF model coefficients.

I heard that PSFEx has been developed almost 12 years ago,
and has been used for production at TERAPIX for many years. Why have you
waited until 2010 for releasing it to the general community?

PSFEx was originally developed for doing PSF-fitting
crowded-field photometry with SExtractor. However I was not very happy
with the way it worked, as SExtractor’s detection and deblending engine
is not meant to deal with crowded star fields. The current release of
PSFEx is made in the framework of the EFIGI [2]_ and DES [3]_ projects,
as a support tool for galaxy model-fitting.

I would like to use PSFEx to generate PSF models for
weak-lensing analyses. Is it the right tool for that?

Simulations of 1h exposures with a 4m optical
telescope and sub-arcsecond seeing show that ellipticities of galaxies with
a Signal-to-Noise Ratio SNR\(>20\) can be recovered with a level of
systematics below \(10^{-3}\) using PSFEx models, even in the presence
of significant amounts of coma and astigmatism. This is for constant
PSFs. Tests with variable PSFs are ongoing.

8. Troubleshooting

TBW

 9. Acknowledging PSFEx

9. Acknowledging PSFEx

Please use the following reference [1]:

> Bertin 2011: Automated Morphometry with SExtractor and PSFEx, ASP Conference Series, Vol. 442, 2011, Ian N. Evans, Alberto Accomazzi, Douglas J. Mink, and Arnold H. Rots, eds., p. 435

10. Acknowledgements

The authors would like to thank Mireille Dantel, Frédéric Magnard,
Chiara Marmo, Gregory Sémah, and the TERAPIX team at IAP for testing and
support on image quality indices, Shantanu Desai, Tony Darnell, Greg
Daues, Joe Mohr and the Dark Energy Survey Management team at University
of Illinois and NCSA, for testing and support on PSF homogenisation,
Philippe Delorme for his contributions to PSF-fitting in SExtractor,
Valérie de Lapparent , Pascal Fouqué, and Jason Kalirai for extensive
testing and suggestions, Mark Calabretta for his great astrometric
library, Manolis Lourakis for making his LevMar library public, Akim
Demaille for his help with the autotools, and Gary Mamon for his careful
reading and corrections to the manuscript.

 11. Bibliography

11. Bibliography

	[1]	E.

 12. Appendices

12. Appendices

12.1. .psf file format description

PSF models are FITS binary tables [https://archive.stsci.edu/fits/fits_standard/node67.html] with a single row,
containing PSF image components. PSF files derived from MEF [http://www.stsci.edu/hst/HST_overview/documents/datahandbook/intro_ch23.html] images are
themselves MEF file, with one PSF_DATA extension per input image
extension.

A sample of a PSF binary table extension header is given below:

XTENSION= 'BINTABLE' / THIS IS A BINARY TABLE (FROM THE LDACTOOLS)
BITPIX = 8 /
NAXIS = 2 /
NAXIS1 = 25000 / BYTES PER ROW
NAXIS2 = 1 / NUMBER OF ROWS
PCOUNT = 0 / RANDOM PARAMETER COUNT
GCOUNT = 1 / GROUP COUNT
TFIELDS = 1 / FIELDS PER ROWS
EXTNAME = 'PSF_DATA' / TABLE NAME
LOADED = 7256 / Number of loaded sources
ACCEPTED= 6637 / Number of accepted sources
CHI2 = 1.17986252 / Final reduced Chi2
POLNAXIS= 2 / Number of context parameters
POLGRP1 = 1 / Polynom group for this context parameter
POLNAME1= 'X_IMAGE ' / Name of this context parameter
POLZERO1= 2.046996443272E+03 / Offset value for this context parameter
POLSCAL1= 4.074312777519E+03 / Scale value for this context parameter
POLGRP2 = 1 / Polynom group for this context parameter
POLNAME2= 'Y_IMAGE ' / Name of this context parameter
POLZERO2= 2.047786695004E+03 / Offset value for this context parameter
POLSCAL2= 4.077873875618E+03 / Scale value for this context parameter
POLNGRP = 1 / Number of context groups
POLDEG1 = 3 / Polynom degree for this context group
PSF_FWHM= 2.23724842 / PSF FWHM in image pixels
PSF_SAMP= 0.47601029 / Sampling step of the PSF data
PSFNAXIS= 3 / Dimensionality of the PSF data
PSFAXIS1= 25 / Number of element along this axis
PSFAXIS2= 25 / Number of element along this axis
PSFAXIS3= 10 / Number of element along this axis
TTYPE1 = 'PSF_MASK' / Tabulated PSF data
TFORM1 = '6250E '
TDIM1 = '(25, 25, 10)'
END

The file content is largely self-describing. Please note that

	The TDIM1 keyword in the extension header contains the total number of
components (conditioned by the PSFVAR_DEGREES configuration parameter) and
the dimensions of the tabulated PSF (see the PSF_SIZE configuration
parameter).

	Every context parameter (e.g., \(X_j\)) is rescaled before being used as
a polynomial variable (\(x_j\)):

(1)\[x_j = \frac{X_j - \textrm{POLZERO} j}{\textrm{POLSCAL}j}\]

	The PSF FWHM reported by the PSF_FWHM keyword is actually derived from
the mode of the
half-light diameter [https://en.wikipedia.org/wiki/Effective_radius]
distribution of the input source image sample.

 Index

Index

_static/up-pressed.png

_images/rhmag.png
16 [~

18

1 mag

22

24

saturated stars

point-source

selection box

galaxies

_static/comment.png

_static/down.png

_images/psfex_xml.png
File Edit View History Bookmarks Tools Help

@ || file:///raid2/bertin/psfex/psfex.xml
%

=

Processing summary on 201

=

Aé[ﬁﬁﬁgltic ne[_ p,:g,;essl..g simmary

PSFEx 3.9.1 started on 2010-11-03 at 23:32:05 with 8 threads (run time: 5 min 15 s)
by user bertin from morpho.iap. fr in /raid2/bertin/psfex

PSF stats per Input File 1

Done

o

Fiename | ictentifir| Nest| iandes| Count map| accasted] rEsemian | Ho-tiant| s rocingl 20 0.r.| rwitm | P9 | o map] Ennpticiey| EVREIEIS Em;t;;'tv‘m.,mp L [
w11 1 s | e | s | 3w | se on | on i | s | ow

00737 psfex dac | 25269008 | 36 i i i i

PSF stats per Extension |

x| o] Naccepta]Hat-Lignt atam] sampin] ¥a.o.¢| i | " | cupeicity] P womat o] ™2 | nesiaunts] *574% aaymmetry|

NS s oot [1o |5 [0 | oo | oo [e [om | cm [om [ow

oo | e s oot [1m [om [sm | ow | om [om [om | om | om | ow

o | w0 s oot [1m [om [sm | on | on [om [om | ow | oo | ow

o | 0 s oot [1m [om [om | om | on [sw | o | ow | oo | om

o | w0 s oot [1m [om [om | om | on [on [om | ow | oo | om

Tomo | e s oot [1o [oo (o | 0w | 0w [om [om | om | om | eow

[T [w0 s oot [t [3m [5m [ow [om [om [5w [om [ow | om .

=

_images/chi2map.png

nav.xhtml

 Table of Contents

 		PSFEx User Manual

 		Introduction

 		License

 		Installing the software

 		Hardware requirements

 		Obtaining PSFEx

 		Software requirements

 		Installation

 		Getting started

 		Input files

 		Catalogues

 		Output files

 		PSF model files (.psf)

 		PSF homogenisation files (.homo)

 		Diagnostic files

 		The Configuration file

 		Creating a configuration file

 		Format of the configuration file

 		Configuration parameter list

 		How PSFEx works

 		Overview of the software

 		Point source selection

 		Selection criteria

 		Iterative filtering

 		Modelling the PSF

 		Pixel basis

 		Gauss-Laguerre basis

 		Other bases

 		Managing PSF variations

 		Quality assessment

 		Examples

 		Hands-on example 1

 		Example 2: very wide photographic plate

 		Example 3: unfocused instrument

 		Frequently Asked Questions

 		Troubleshooting

 		Acknowledging PSFEx

 		Acknowledgements

 		Bibliography

 		Appendices

 		.psf file format description

_static/minus.png

_static/comment-close.png

_st